Who are cochlear implants for?

e People with little or no hearing
- and little conductive component to the loss

e who receive little or no benefit from a
hearing aid.

e Implants seem to work best in ...

- adults who had a significant period of
relatively good hearing before becoming
profoundly deaf, and who developed good
language.

- children who are young enough to develop
language through an implant.

Essential feature

e substitute for faulty or missing inner hair
cell ...
e by direct electrical stimulation of residual
auditory nerve fibres
- but brain stem implants are also being used
e Need, at a minimum ...
- microphone + ‘processor’
- electrodes in the cochlea
- a way to connect them (radio transmission)

1. Sound is received by the microphone of the
speech processor.

2. The sound is digitized, analyzed and transformed
into coded signals.

3. Coded signals are sent to the transmitter.

4. The transmitter sends the code across the skin
to the internal implant where it is converted to
electric signals.

5. Electric signals are sent to the electrode array to
stimulate the residual auditory nerve fibres in the
cochlea.

6. Signals travel to the brain, carrying information

about sound. .




Implanted radio
receiver

Electrode inserted
in inner ear

The electrode array

What are the essential purposes of
a speech processor?

e To transduce acoustical signals into
an electrical form.

e To process the acoustic signal in
various ways (e.g., filter, compress).

e To convert (or code) the resulting
electrical signals into a form
appropriate for stimulation of the
auditory nerve.




What other functions can and
might be implemented in a
speech processor?

e Minimising the effects of background
noise.

e The possibility of different processing
schemes for different situations.

e Enhancing speech features that
contribute most to speech
intelligibility.

What should an implant do?

e Mimic the most important functions
of the normal ear.

e So what does a normal ear do?
- frequency analysis
—amplitude compression

— preservation of temporal features, bot
slow and fast (e.g., through envelope
following and phase locking)
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Common elements in speech
processing

e A microphone to transduce acoustic
signals into electrical ones.

e Amplitude compression to address the
verK limited dynamic range of electro-
cochlear stimulation.

e Use of the ‘place’ principle for multiple
electrodes (mapping low to high
frequency components onto apical to
basal cochlear places).
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But speech processing schemes
vary significantly in other ways

¢ Pulsatile vs. continuously varying

(‘wavey’) stimulation.

- Not to be confused with analogue vs. digital
implementations. All electrical stimulation is
analogue.

e Simultaneous vs. non-simultaneous
presentation of currents to different
electrodes.

- Non-simultaneous stimulation requires
pulsatile stimulation
12




Multi-channel systems

e All contemporary systems present
different waveforms to different
electrodes
—to mimic the frequency analysis of the

normal mammalian cochlea.

e Think of the peripheral auditory
system as analogous to a filter bank.
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The filter bank analogy

e Imagine each afferent auditory nerve
fibre has a bandpass filter attached to
its input
- centre frequencies decreasing from base to

apex
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The no-brainer cochlear implant
speech processing strategy ...

e Use an electronic filter bank to
substitute for the auditory filter
bank (the mechanics of the basilar
membrane).
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A simple speech processing scheme for a
cochlear implant: Compressed Analogue (CA)
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The most common current method:

Continuous Interleaved Sampling
(CIS)

eUse a filter bank approach to represent
spectral shape ...

ewith non-simultaneous pulatile
stimulation to minimise electrode
interactions

ewith pulse amplitudes modulated by the
envelope of the bandpass filter outputs.
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Continuous Interleaved Sampling
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Simulations can give us some idea
of what an implant user might
experience
But ...caveat perceptor!

e These are not exactly what an
implant sounds like ...

e but you can get some idea about
the kind of information that gets
through.

Noise-excited Vocoding
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... and when summed together.

Children like strawberries.
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Other schemes:
Necessity is the mother of invention

e The problem (historically)

- How could devices running at relatively
slow rates be used for CIS, which
required high rates of pulsatile
stimulation?

e The solution

- Pick and present pulses only at the
significant peaks in the spectrum.

28
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Restricted dynamic range
means compression is crucial
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Intensity jnds in electrical
(opposed to acoustic)
stimulation:

1) ‘miss’ Weber’s Law
more

2) are typically
smaller, but not by enough
to offset reduced dynamic
range.

4 wib CI users here had 7-45
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Acoustic/electrical loudness matches
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Temporal
resolution:
TMTFs

More dependent on level

Otherwise similar to normal
listeners (dashed lines)
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Relationships to performance with

modulation detection
thresholds measured at
100 Hz, at a number of
levels (previous slide)

Fu 2002 NeuroReport

speech
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Mean modulation detection threshold (4B re 100%)

Fig. 2. Correlation berween phoreme identification (percent correct)
and subjects” mean medulation detecton thresholds {calculated across
each subjects entire dynamic range). Conzonant scores and linear regres-
sion are shown by the filled cirdes and sclid line. Yowel scores and linear

regression are shown by the open drdes and dashed line.

Perceiving variations in amount of
activity across electrodes

e Essential for signaling of ...

- spectral shape

e Spectral shape is encoded by
relatively slow level changes across

electrodes
e Striking fact

— preservation of fast modulation rates
not necessary for intelligibility in noise-

vocoded speech
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Restricting modulation rates allowable
in noise-excited vocoding
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Slow level changes across channels
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Discrimination

of rippled noise

~

0.25 ripplesfoctave Irverted

find the maximum ripple
density at which it is possible
to discriminate ‘standard’
ripple noise from its inverted
version

1 rlpples/octave

Ralative magnitude (dB)

‘This test is hypothesized to
provide a direct measure of the
ability of listeners to perceive the
frequency locations of spectral
peaks in a broadband acoustic

signal.’

Frequency (kHz)

Henry et al. 2005 J Acoust Soc Am 42
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nation of rippled noise
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Relationships to performance with

Score (% correct)

12 hvd by 20 talkers

speech in quiet

16 VCVs by 4 talkers
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Statistical interlude:
The effect of outliers
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Statistical interlude:
The effect of outliers

. r2=0.37 r=0.33
= ﬂ 23 p<0.005 a p<0.006
o 0.5 1 1.5 z 0 8.5 ! L3 :
. »
consonants
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Relationships to performance with
speech in noise

SRT determined for selection of one of 12 spondees

In two-talker babble In steady-state noise
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Why is speech melody (voice
pitch) important to hear?

e Contributes to speech intelligibility in all
languages
e A good supplement to lipread information

e May play an important role in separating
speech from background noises

e Appears to play a more crucial role for the
young child developing language
e Crucial in so-called tone languages
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SCALE PITCH
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Pitch based on a purely
temporal code
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temporal code
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Melody recognition

Percent correct
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N R rhythm
N
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Kong et al. (2004)

Conditions

Figure 4. Melody identification scores from individual co-

chlear imp
horizontal

lant listeners with the original melodies. The
dashed line indicates the mean chance perfor-

mance. The vertical bars represent different subjects in each

condition.

51

CI users classifying rise/fall
contours on diphthongs
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Melody coded as periodicity in rapid within-channel patterns
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The representation of melody can be messy!
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Perception of fundamental pitch in
complex waves is very poor

e Lower harmonics cannot be resolved
as in normal hearing

e Phase-locking seems ‘different’

e Mis-match between place of
excitation and temporal pattern may
be important

55

What happens when an electrode
is incompletely inserted?

CFs along cochlear spiral
- typical Iength 35 mm

56




Simulations of incomplete insertions
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Can the deleterious effects of spectral
shifting be overcome over time?

Pre-training Post-training
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normal listeners in simulations: Rosen et al. 1999 J Acoust Soc Am

Hair cell substitution?
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from Lynne Werner: http://depts.washington.edu/sphsc461/CI_notes.htm

Why is a CI not as good as normal
hearing?

e It's a damaged auditory system, presumably with

accompanying neural degeneration (e.g. dead regions)

e Electrodes may not extend fully along the length of the

basilar membrane (BM), so mis-matched tuning and
restricted access to apical regions (where nerve survival is
typically greatest)

e 3000 IHCs vs. a couple of dozen electrodes, hence poorer

frequency selectivity

e Current spreads across BM, hence poorer frequency

selectivity

¢ Less independence of firing across nerve fibres, appears to

affect temporal coding

e Small dynamic ranges but intensity jnd’s not

correspondingly smaller, hence fewer discriminable steps in
loudness

e But good temporal and intensity resolution
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